Maximum modular graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum modular graphs

Modularity has been explored as an important quantitative metric for community and cluster detection in networks. Finding the maximum modularity of a given graph has been proven to be NPcomplete and therefore, several heuristic algorithms have been proposed. We investigate the problem of finding the maximum modularity of classes of graphs that have the same number of links and/or nodes and dete...

متن کامل

modular edge colorings of mycielskian graphs

let $g$ be a connected graph of order $3$ or more and $c:e(g)rightarrowmathbb{z}_k$‎ ‎($kge 2$) a $k$-edge coloring of $g$ where adjacent edges may be colored the same‎. ‎the color sum $s(v)$ of a vertex $v$ of $g$ is the sum in $mathbb{z}_k$ of the colors of the edges incident with $v.$ the $k$-edge coloring $c$ is a modular $k$-edge coloring of $g$ if $s(u)ne s(v)$ in $mathbb{z}_k$ for all pa...

متن کامل

Modular Representations of Graphs

A graph G has a representation modulo r if there exists an injective map f : V (G) → {0, 1, ..., r − 1} such that vertices u and v are adjacent if and only if f(u) − f(v) is relatively prime to r. The representation number of G, rep(G), is the smallest integer such that G has a representation modulo r. In this paper we study the representation numbers of various graphs, such as the complete ter...

متن کامل

k-forested choosability of graphs with bounded maximum average degree

A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...

متن کامل

Tricyclic and Tetracyclic Graphs with Maximum and Minimum Eccentric Connectivity

Let $G$ be a connected graph on $n$ vertices. $G$ is called tricyclic if it has $n + 2$ edges, and tetracyclic if $G$ has exactly $n + 3$ edges. Suppose $mathcal{C}_n$ and $mathcal{D}_n$ denote the set of all tricyclic and tetracyclic $n-$vertex graphs, respectively. The aim of this paper is to calculate the minimum and maximum of eccentric connectivity index in $mathcal{C}_n$ and $mathcal{D}_n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The European Physical Journal B

سال: 2012

ISSN: 1434-6028,1434-6036

DOI: 10.1140/epjb/e2012-20898-3